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The factor of 1017 proposed by Lothe and Pound in the theory of nucleation of droplets 
from the vapor phase is studied using classical statistical mechanics. The controversial 
factor q5 is derived from partition functions for an isolated n-mer and for an n-molecular 
cluster imbedded in the bulk liquid phase. The rotational degrees of freedom have 
no place in q~, in agreement with Reiss, Katz, and Cohen's treatment. It is proved 
that the surface free energy of a cluster is proportional to the surface area. The estimate 
of what Lothe and Pound called the replacement term is different from those of previous 
authors. It is concluded that q~ is written as a ratio ~b = vo/v,, where vg and v~ are 
the volumes per molecule in the gas phase and in the liquid phase, respectively. For 
water at 300~ ~b is approximatelY equal to 10 ~. 

KEY WORDS: homogeneous nucleation; statistical mechanics (classical, equilibrium, 
small systems); phase transitions; surface tension. 

1. I N T R O D U C T I O N  

The cont roversy  over  the fac tor  o f  1017 in the theory  o f  nuclea t ion  o f  drople ts  which 

was s tar ted when Lothe  and  P o u n d  (1) p roposed  the fac tor  in 1962 does no t  seem to 
have come to an accord  in spite of  the efforts o f  many  investigators.  Lothe  and  
Pound ' s  claima-Z! is that  the classical theory  o f  nuclea t ion  had  missed a large fac tor  
a t t r ibu tab le  to t rans la t ional  and  ro ta t iona l  degrees o f  f reedom of  a cluster. In  the 
latest  con t r ibu t ion  to the issue, Reiss, Katz ,  and  Cohen (~,z) ( R K C )  argued tha t  the 
fac tor  should  be much smaller,  between 3 • 103 and  l0  G. The  present  pape r  examines  
the par t i t ion  funct ions as was done by  R K C ,  but  with emphasis  on different aspects. 

As  a p repa ra t ion  for  the la ter  discussion, the  expression for  the number  o f  
n-mers is der ived in Section 2. The fo rmula  agrees with tha t  o f  R K C .  A "molecu la r  
volume theo rem"  is p roved  in Section 3 as a general  p rope r ty  o f  classical pa r t i t ion  
funct ions for  in teract ing particles.  This theorem separates  the t rans la t iona l  degrees 
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of  freedom from the relative coordinates. In Section 4, the partition function of the 
n-met is calculated starting from a bulk liquid phase and removing the "outside" 
molecules to infinity. The translational degrees of freedom in the partition function 
are treated using the molecular volume theorem. The expression for the controversial 
factor is derived. Section 5 reformulates the derivation in mathematical terms. The 
surface free energy is treated in Section 6, and comments on previous treatments are 
given in Section 7. 

We treat molecules of a certain chemical species condensing from the vapor 
phase into liquid droplets. Since a molecule behaves as an integral entity in both the 
vapor and the liquid phases, the internal degrees of freedom of a molecule do not 
play any role in the condensation phenomenon, and hence will be disregarded. 

A general property of the classical statistical mechanics is that the partition 
function (p.fn.) is separated into the momentum part and the configurational part. 
When the momentum part is integrated, each degree of freedom contributes a factor 
(2~mkT)l/2/h, where m is the mass of a molecule and h is Planck's constant. 
Consequently, 

y =-- (27rmkr/h2)3/~ (1) 

multiplies each volume element of the configurational part to make the p.fn. dimen- 
sionless. In the rest of the paper, we understand that the momentum part of the p.fn. 
has been integrated, and our main attention will be directed to the configurational p.fn. 

2. TMfi N U M B E R  O F  n-MERS 

We derive the expression for the number of n-molecular clusters (or the n-mers) 
in the vapor phase based on a simple cubic lattice whose lattice constant is infinite- 
simally small. This lattice actually represents the continuum space. The advantage 
of the lattice treatment is that the number of configurations can be counted easily. 

An n-mer in this lattice is formed by placing n molecules on lattice points not far 
away from each other, so that each molecule is within the force range of at least one 
other member of the cluster. Different relative configurations of the n-met are 
numbered by i ~- 1, 2,.... They are relative configurations in the sense that we do not 
count two configurations different when the two can be superposed by translation of 
the whole cluster; however, two configurations which can be superposed by rotation 
are counted separately. 

Each configuration (of a cluster) which is counted separately is thus designated 
by two numbers: n and i. The number of (n, i) clusters in the system is written as N~,~, 
and the potential energy contained in this cluster is denoted by en,~ �9 The latter is the 
sum of intermolecular potentials over all pairs within the cluster. The total potential 
energy in the system is then 

E = Z .,.,,N.,,i (2) 
n,{ 

A configurational state of the whole system is defined by placing clusters over the 
lattice. When the set of numbers {N,, d is given, the number of different states (of the 
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system) sharing the same set is given by the number of distributing these clusters over 
the lattice points 

"Q = No! FL,~ U,~ ~, (v07)** Z nN,~,~ (3) 

where 2r the total number of lattice points in the system, and N o is defined by 

No = 2V -- ~ N~,~ (4) 
n, i  

The double asterisk is the FORTRAN notation for "raised to the power of." This D is 
the weight factor after the integration over the momentum space has been done, 
so that one factor y defined in Eq. (1) appears for one molecule. Here v 0 is the volume 
per lattice point, and appears in a"2 because each lattice point actually represents v0y 
states. The combinatorial factor in ~ is not perfectly accurate, since overlaps of  clusters 
are not avoided in the expression. This inaccuracy of counting configurations, 
however, is characteristic of the "droplet" model of  nucleation theory and is 
acceptable for the early stage of nucleation, where the number and sizes of clusters 
are small. 

The Helmholtz free energy F f o r  the system is constructed using Eqs. (2) and (3) as 

F =  E - -  kT lns  ix[~ nN~,i-- N~] (5) 

Here, /x is the Lagrange multiplier, and the bracketed terms are added anticipating 
that F is to be minimized under the subsidiary condition 

Na = ~ nN~,i (6) 

where N~ is the total number of molecules in the system. 
The most probable distribution {N~,i} is derived by minimizing F with respect 

to N.,i keeping 2V, T, /x, and Na fixed: 

Nn, i = No(roy) '~ exp(n/zfi -- E,n,i5 ) (7) 

The meaning of/~ is derived from Eq. (5) as 

(~F/ON~)T = /, (8) 

which indicates that /x is the chemical potential. The total number of n-mers Nn is 
obtained as a sum of Nn,i over i: 

N~ = Noe~"~(voy)" ~ exp(--e~,ifi) (9) 
i 

The physical meaning of this is easy to understand. It is a sum of the Boltzmann 
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factors for all possible configurations of n-clusters including different orientations 
and different locations. The different locations are taken care of by the factor:No. 
We rewrite Eq. (9) using the total volume of the system V: 

V = Nvo ~ Novo (10) 

where the last approximate equality is legitimate for the droplet model. Then Eq. (9) 
is written in the form 

N~ = en"~Vv ~ (v0~) ~-1 exp(--~E~,,:) (11) 
i 

A more familiar way of writing Eq. (11) is in the integral form, since v0 is an 
arbitrarily small volume. Reiss et aL (5) write the same equation in their Eqs. (10) 
and (14) as 

N,~ = en"e-Z. Vz~sol (12a) 

with 

Zisol = n z f "'" f dr1' "'" dry-1 exp[--/~,(rl', .... [n--l)] (12b)  

where r /  is the coordinate of the j th  molecule relative to the center of mass (the 
center-of-mass coordinate). The factor n 8 is the Jacobian. The division by n! is 
necessary in order to make n particles indistinguishable. It is easy to interpret Eq. (11) 
or (12) and say that the sum or the integral in it is the p.fn. relative to the center of 
mass, and the V in front of it represents the mass motion. In the integral of 
Eq. (12b), the center of mass is regarded fixed at the origin. In this sense, Zisol or the 
sum in Eq. (11) may be called the fixed-point p. fn. ,  or the relative p.fn., and may be 
designated by zFPf)~") �9 The important characteristic of Q~e ) is that the translational 
degrees of freedom for the center of mass or the fixed point are not included in 
the p.fn. 

In connection with this interpretation, it is noticed that the volume V in which 
the center of mass may move is normalized with 7, and the mass in this factor is rn, 
as shown in Eq. (1). Then a legitimate question one may ask is, "Why is the mass 
associated with the mass motion in Eq. (11) or (12) the mass of a single molecule m 
rather than nm for the n-mer ?" This question is answered in Appendix A. 

It is to be noted that the configurational p.fn., Zisol in Eq. (12) or the 
corresponding sum in Eq. (11), contains different outside shapes of the n-mer. The 
need arises later for different shapes to be treated separately. Two outside shapes are 
defined as different when a part of the boundary differs more than l (the average 
intermolecular distance) after best effort to superpose them, not by a rotation, but 
by a linear translation. 

3. T H E  " H O L E C U L A R  V O L U M E "  T H E O R E M  

Before proceeding to the next step of imbedding the n-mer in the liquid phase, 
we prove a theorem of general validity for classical partition functions. The theorem 
is stated as: 
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T h e o r e m .  The configurational p.fn. of a homogeneous system of molecules is 
the product of the molecular volume and the fixed-point p.fn. 

We first prove the theorem assuming the periodic boundary condition. The 
configurational p.fn. for a system of N molecules in a volume V is written as 

1 
Q = ~ f v d r l  fvdr2 "'" f drN exp[--fle(N)] (13) 

where E(N) is the potential energy of the N molecules and depends on the relative 
coordinates only. The N! makes molecules indistinguishable. The dri integration is 
done in the volume V of the system. Under the periodic boundary condition, the 
result of integrations over r2 ,..., rN is independent of rl �9 Thus, we can write Q as 

V/N 
Q - - ( N -  1)' fv  drz fv ar3 "'" fv ar' exp[- 4N)] (14) 

The number of molecules to be made indistinguishable is now N -  1, since the 
molecule No. 1 is fixed at the origin in the integration. Therefore, the integral divided 
by (N -- 1)! is the fixed-point p.fn., as defined in the previous section, and Q is proved 
to be the product of this quantity and the molecular volume V/N as the theorem 
claims. 

We next examine the boundary which is not periodic. First, we note that the 
analysis in Eqs. (13) and (14) counts the number of independent configurations 
correctly, and the difference between the two boundary conditions lies only in the 
evaluation of the potential energy. The nonperiodic case can be derived from the 
periodic one by imposing an extra requirement that the interaction across the 
boundary vanishes. Or we may write 

~p.b. = ~o~-p.b. + ~cross (15) 

When the system is large, and hence the boundary area is large, the fluctuation 
of eaeross relative to the rest is small, so that we can justifiably neglect its variation 
for different configurations. Under this interpretation, we can apply the same analysis 
as Eqs. (13) and (14) to the nonperiodic boundary case by subtracting a constant 
value eaeross from the energy, to come to the same conclusion. Thus, the theorem 
is proved for the nonperiodic boundary condition also. 

The physical interpretation of the theorem is as follows. We fix one of the 
molecules (to be called the center molecule) at the origin and consider all configura- 
tions made by moving around the remaining N -- 1 molecules. The p.fn. constructed 
with these configurations is the fixed-point p.fn., QFP �9 When we linearly translate one 
of the configurations, the center molecule steps out of the origin, which is then left 
vacant. (In the linear translation, the system is treated as a rigid body with the relative 
distances of molecules in the configuration fixed, and then is moved parallel to itself, 
keeping the same orientation.) The configuration in which the origin is not occupied 
by a molecule is certainly distinguishably different from the one in which it is occupied. 
However, if the configuration is shifted too far, another molecule may come to the 
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origin, and then this configuration is not new any more, since it is one of the configura- 
tions counted in the p.fn. QFt' �9 The volume in which the center molecule may move 
and still give rise to distinguishably different configurations of the system is roughly 
within a "molecular polygon" bounded by planes each of which bisects a line 
connecting the center molecule to one of its neighbors in the given configuration. 
The volume of this polygon is, on the average, equal to the volume per molecule 
V / N  = v~. Thus, we can say that distinguishably different configurations of the 
system are obtained when the center molecule, and hence the whole configuration, 
translates linearly within the molecular polygon whose volume is vt on the average. 
Thus, the complete configurational p.fn., Q, is a product of v, and QFP. 

The same technique can be used in deriving the volume v~ rigorously rather 
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Fig. 1. A linear translation in a one-dimensional system. A horizontal line defines a configuration. 
Dotted lines show how molecules shift. Since the periodic botmdary is assumed, a molecule disap- 
pearing at the left reappears from the right. 
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than "on  the average." I f  we move the center molecule in the entire volume V, during 
this process, all of  the N molecules pass the origin one after another. This means 
the volume V is shared by N different fixed-point configurations, and thus the volume 
per configuration is rigorously V/N = v~, as we wanted to show. An example of  a 
one-dimensional system of eight molecules is shown in Fig. 1. In the configuration C1, 
a molecule sits at the origin (i.e., the left end of the system), and hence it is a fixed- 
point configuration. We shift C1 toward the left; dotted lines indicate traces of  
molecules. As C1 is shifted, configurations like CA emerge, which have not been 
counted in QFP �9 However, as the shifting continues, C2 appears, which is no longer 
new, since it is one of  the fixed-point configurations counted in QFI, �9 During the 
sweep of  the entire length, 8v~ shown in Fig. 1, eight different fixed-point configura- 
tions C1, C2 ..... C8 appear. Taking into account the fact that under the periodic 
boundary condition we have Ecl = ecz - -  - -  Ecs = ECA and that these equalities 
also hold approximately when the boundary is not periodic, we can write 

8vz exp(--flEcl) = v~[exp(--fl,cl) -t- exp(--/3,c2) + "'" -t- exp(--13Ecs)] (16) 

as a contribution to the complete p.fn. The right-hand side is what is claimed in the 
theorem. 

4. T H E  I M B E D D E D  C L U S T E R  

Our aim is to write the right-hand side of  the expression (11) for N,, in terms 
of the free energy of the bulk liquid and of the surface tension of the droplet. For  this 
purpose, we work on each shape of the n-mer separately. We pick up configurations 
i = 1, 2 .... of  the prescribed shape of the isolated n-met and place them inside the 
boundary of the same shape on the small-meshed lattice, which is the same as the one 
used in Section 2. These are the fixed-point configurations Q ~  defined in Section 2. 
We then surround the cluster by additional N molecules over the rest of  the lattice 
in such a way that a homogeneous liquid phase of the same density as the n-mer 
results. We call the molecules in the first-placed n-mer the "inside" molecules and those 
added the "outside" molecules. Different configurations of  the N outside molecules 
are numbered by I = 1, 2 ..... The configurations of  n § N molecules thus con- 
structed exhaust all we need for the fixed-point p.fn., Q~+N). However, the following 
comment concerning the shape of the cluster should be noted. 

Unless the shape of the inside cluster is prescribed, some of the outside configura- 
tions are counted more than once. As seen in Fig. 2, a configuration of  the n + N 
molecules is counted twice when a configuration B of the inside cluster is derived 
f rom another one A by removing one or more molecules C from A and adding the 
same number of  molecules D to A. In this case, a configuration E (of the n -t- N 
molecules) which contains A together with D contains both A and B. Then E is counted 
twice, once starting from A and adding N outside molecules to it (when the 
molecules D are part  of  the added N) and next starting from B (when the molecules C 
are part  of  the added N). The restriction that the outside shape of the n-cluster is 
no more different that the average intermolecular distance l anywhere on the surface, 
as was stated at the end of Section 2, prevents the possibility of  including A and B 
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Fig .  2. 
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An example of  a configuration which is counted twice. 

shown in the example as belonging to the same shape of  the cluster. Therefore, when 
we deal with a prescribed shape of the cluster, each configuration is counted only 
once. 

In order to conform with the proof  of the molecular volume theorem, it is 
needed to place one of the molecules at a fixed point in space. We pick a certain 
point inside the cluster and call it the origin. When the origin is not occupied by a 
molecule in a configuration, we shift the configuration linearly so that a molecule 
which has located near the origin now occupies it. The shift can be less than half of 
the intermolecular distance 1. Since no two configurations of the inside cluster are 
superposable by a linear translation, the one-to-one correspondence is maintained 
between the shifted and the original configurations. The shifted configuration is 
ready for the molecular volume theorem. 

In order to write the p.fn. explicitly, we define el for the potential energy of 
the Ith configuration of the outside molecules and ei, 1 for the potential energy between 
the ith configuration of the inside molecules and the Ith configuration of the outside 
molecules. (The two subscripts i and I have a different meaning from those in 
Section 2, but no confusion is expected.) Using these definitions, Q~+m is written as 

Q~+N, = ~ v~-I exp(--flE~) ~ v0N exp[--fl(%z + e/)] (17) 
i i 

where ~ ,  sums over the n -- 1 inside molecules (since the center molecule is always 
at the origin) and the second summation goes over the outside N molecules. 

The p.fn. for the whole system built by the n inside and N outside molecules 
can be written as exp[--]3(n -t- N ) f - -  ~A,~+nfi], where f is a function of internal 
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variables only (of the density and the temperature), because each molecule is exactly 
equivalent on the average, except for the edge effect near the external surface. Here, 

is the surface tension, and A,~+N is the external surface area of the system. The 
molecular volume theorem tells us that the complete configurational p.fn. is written 
as ~vP"-n~+m. Taking into account the momentum p.fn., we can then write 

exp[--(n -1- N )  f ~  - -  crA~+N~] 

= 7v~ Z (Yvo) ~-~ exp(- -e~)  ~ (yvo) N exp[--(E~.~ § ~)fi] (18) 
i I 

It is seen that for each three degrees of freedom, a factor }'v0 appears. Since (n § N ) f  
is the Helmholtz free energy for n + N molecules, the chemical potential /x~ for a 
liquid molecule is related t o f a s  

f = tzz - -  pv~ (19) 

where p is the pressure. In our problem,/x~ for the liquid phase is smaller than ~ in 
Eq. (8) for the vapor phase, so that the vapor condenses into liquid. 

When the range of intermolecular interaction is finite, the molecules inside the 
cluster do not interact with those molecules that are far from the cluster. Therefore, 
it is expected that e - "~  for the cluster can be written in terms of the cluster itself 
and the surface term which is contributed from outside molecules in the neighborhood. 
For  a given inside configuration i, we may sum over the outside configurations I and 
define the surface free energy ~ as 

exp(fi~) = ~ ( y r , )  N exp[--fi(e~.~ + e l ) ] / e xp ( - -N f f i  - -  ~A~+N~) (20) 
I 

The caret on 6~ indicates that it has a dimension of energy; the dimension of cr is 
energy per area. It is to be noted that Eq. (20) does not depend on y, since (yvo) N 

in e -~vs~ cancels the same in the numerator. Also, the edge effect near the external 
surface cancels on the right-hand side. Using the average surface factor of Eq. (20), 
we can transform Eq. (18) as 

e -"j~ = yv~ E (yVo) '~-1 e x p E - ( e i  - ai)/31 
i 

(21) 

The separation of the whole system into two parts can be achieved by a boundary 
of any shape. Therefore, Eq. (21) holds for a cluster of any size n and any shape; 
also, it is exact, although it is not easy to evaluate ~ .  When the infinite separation 
is taken as the zero of the potential energy, e~.~ is negative; the sign in front of  ~ is 
so chosen that ~ is positive. 

I f  we move all the outside molecules away to infinity, the bonds e~,z across the 
surface are cut and the work ~ has to be done. As is proved in Section 6, this work 
is proportional to the surface area of  the cluster A~ and is the surface free energy 
(of the isolated cluster), which is written as 

6"~ = c~A~ (22) 
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Since the outside shape of  the configurations in Eq. (21) is fixed, the surface free 
energy aA,~ depends on i very little, so that we can bring this term to the front of the 
summation in Eq. (21) to write 

A. ~ exp[--(nf + crA.)/~] = 7vt Z (~]/)0)n-1 exp(--fiEi) (23) 
i 

The summation in Eq. (23) is over the fixed-point configurations and is exactIy 
the same as a part of the sum in Eq. (11) for the corresponding outside shape of the 
cluster. Elimination of the sum from the two equations leads to the expression 

N,~ = (Viva) ~ O exp{--[n(f  -- /z) + crA,],B} (24) 
shapes  

where the factor 0 takes into account the orientation degeneracy. For a sphere, 
0 = 1. If  we define the controversial factor (/) based on the spherical area A~ ) as 

N~ = ~5N. exp{--[n(/~ -- ~) -+- (rA(~ (25a) 

A ~ = 4~r( 3nv~/47r) ~/a (25b) 

then the expression for ~ is 

c~ = (vg/v~) exp(pnv~fi) t l  4- 
( 

O exp[--(A. -- A(~ ~ crt3l} (26) 
shapes  

sphe re  

where Na is the total number of molecules and vg = V/Na is the volume per molecule, 
both in the gas phase. In Eq. (26), v~ is the molecular volume, i.e., the volume per 
molecule, in the liquid phase, p is the pressure, and n the number of molecules in the 
cluster. 

The orientation degeneracy factor O is estimated as follows. As was mentioned 
at the end of Section 2, two outside shapes of  a cluster are not distinguishable unless 
they differ more than 1. We divide the spherical surface A~ ~ into unit areas of l 2 and 
then count the number of different orientations the outside shape can take treating 
the solid angle 47r12/A~ ~ as one distinguishable orientation. For example, if a surface 
of an n-mer has one molecule outside of a sphere, the number of distinguishable 
ways of orienting this shape is equal to the number of unit areas 12 on the surface: 

0 = A(~  ~ ~ ,  5n~/~ (27) 

Another example of O is schematically illustrated by the two shapes of a two- 
dimensional cluster in Fig. 3. The orientational degeneracy factor O~ for (a) is twice 
as large as O~ because (a) can be rotated for 360 ~ to produce distinguishably different 
configurations, while (b) can be rotated only for 180 ~ due to the twofold rotational 
symmetry of the figure. 

For water at 300 ~ K, the data are 

vg = 4 • 10 -I9 cm 3, vz = 3 • 10 -23 c m  a,  (7 = 70 dyn/cm (28) 
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Fig. 3. 

0 0 
(a} (b) 

Two configurat ions of  a cluster having different or ientat ion degeneracies O. 

Since we can approximately use the ideal-gas equation of state pvgfi = 1 for the 
gas phase, we see pnvzfi ~ 10 -~' for n = 100. Thus, the factor exp(pnv~fl) can be 
disregarded. When a boundary deviates from the spherical shape by the distance 
l = vJ/a anywhere on the surface, the increase in the surface area is larger than the 
order of 2~rF which causes the increase in the surface free energy of 2rrl2cr/kT ~ 10. 
Thus, the sum over nonspherical shapes in Eq. (26) can also be neglected, so that 
with a sufficient accuracy we can write 

q~ = vg/v~ (29) 

For  the data in Eq. (28), q~ has the value 

= lO4 ( 3 o )  

As a check of the consistency of our theory, we may examine a special case, 
when the cluster is a rectangular paralMepiped. In this case, the partition function 
of the cluster can be calculated without being imbedded in the matrix bulk liquid 
phase, since the steps in the proof  of the molecular volume theory can be applied to 
the cluster itself. This procedure leads directly from Eq. (18) to Eq. (23) by disregarding 
the "outside" and putting N = 0; this shows the internal consistency of the theory. 

5. A L T E R N A T I V E  D E R I V A T I O N  

In this section, we reformulate the results of the previous section using 
integrations. It is more mathematical, but may be more straightforward. The complete 
p.fn. for the n + N molecules is written as 

__ 7 n+N 
exp[--(n + N) ffi -- crA~+Nfl] (n + N)! f drz ". f dr~+N exp[--fiffn + N)] (31) 

where each integral goes over the entire volume of the system. As was done in Section 3 
in the proof  of the molecular volume theorem, we can do the integration of rz over 
the entire volume (n -? N)vz : 

Y~+Nv~ f dr2"" f dr~+ivexp[-flffn + N)] ex p [ - ( n  q- N)f f l  -- crA~+Nfl] = (n -}- N -- 1)! 
(32) 
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because this integral is independent of r~. Now we draw a boundary which contains 
the volume nvz and also contains the origin, where the molecule No. 1 is always 
placed. We now divide n + N -  1 molecules into two groups of n -- 1 and N, 
and place n -- t molecules inside the boundary and N outside. The number of ways 
of choosing n -- 1 molecules is (n -- N -- 1)!/[(n -- 1)! N!]. Thus, Eq. (32) may be 
written as 

7 '~-~ fdr  . . . fdr ,  e_~,,,) exp[--(n + N ) f f l  - -  ~A.+N/3] = yv~ (n -- t)! 

7 N 
• ~ f dR~ -.- f dR~ exp{--/3[e(n, N) + ,(N)I} (33) 

where E(n, N) is the inside-outside interaction corresponding to E~,t in Eq. (18), 
The first group of integrations is over all the relative configurations of the n molecules 
inside the fixed boundary and exactly corresponds to the summation Z~ in Eql (18). 
The second group of integrations is for the N outside molecules and corresponds to 
the sum ~ i i n  Eq. (18). Thus, Eq. (33) is the integral expression of Eq. (18). 

The effect of the outside molecules on the inside cluster is written in the form of 
the surface free energy, defined as 

exp[fl~(n)] 

_ _  ~ / N  

f dR1 ~ f dR~v exp{--/3[e(n, N )  + E ( N ) ] } / e x p [ - - U f f l  - -  ~A.+N/3] (34) 
N! 

Use of Eq. (34) in Eq. (33) leads to 

~].--1 C C 
e-"S~ = 7v~ (n  - -  1)! J dr, .-. J dr,  exp{--/3[e(n) -- 6(n)l} (35) 

This relation is exact and holds for any shape of the inside cluster. I f  we remove the 
outside molecules to infinity, the work 6(n) must be done. The work is proportional 
to the surface area, and is written as cram. When erA, depends little on the 
coordinates r j ,  we may take this out of the integral and write 

)/~--1 
As ~ exp[--(nf + erA.)/3] = yvz f dr2 "'" ~ dr~ e -s~'", (n 1)~ o d (36) 

On the other hand, the number of n-mers, Eq. (11), can be written in the integral 
form as 

7~-1 f dr2.., f dr~e - ~ "  (37) N ~  = e '~"~TV (n  - -  1)! 

where the integration is done inside the fixed boundary in which we are interested. 
The difference between n! of Eq. (12) and (n -- 1)! in Eq. (37) occurs because in 
Eq. (12b) all n molecules are equivalent, while in Eq. (37), the molecule No. 1 is fixed 
relative to the boundary of integration, so that only n -- 1 molecules are equivalent. 
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Although it is not shown explicitly, the integral in Eq. (37) includes various different 
outside shapes of the cluster, while Eq. (36) is for one of them. Except for this 
difference in the outside shapes, integrals in Eqs. (36) and (37) are exactly the same, 
so that we can eliminate them to arrive at the results expressed in Eqs. (25) and (26). 

6. S U R F A C E  FREE E N E R G Y  

In writin Eq. (23), we stated that ~ defined in Eq. (20) is proportional to the 
surface area as in Eq. (22). If  it is not, an extra factor is to be multiplied by vz in 
Eq. (23), and then q~ in Eq. (26) or (29) is to be divided by this extra factor. This 
section is devoted to the proof of  Eq. (22), which consequently denies such an extra 
factor. We have to be content with a qualitative and heuristic proof. Our particular 
attention is directed toward the translational and rotational oscillations of the inside 
cluster as a rigid body, or the equivalent motions of  the "outside" when the inside 
is kept fixed. 

In the definition of 6~ in Eq. (20), we keep the inside cluster fixed and sum over 
all configurations of the outside cluster. The difference between this ~ and the ordinary 
concept of surface tension is that the latter is defined for an infinitely wide, flat 
surface, while our 6, is for a finite closed surface. We ask if this difference makes 
~ violate Eq. (22). 

Figure 4 shows an example of a cluster imbedded in the bulk liquid phase. 
When the inside cluster is taken out, the intermolecular bonds across the surface are 
broken. As is seen in Eq. (20), the surface free energy ~ is the average of the potential 
energies ~.~ for these bonds when the outside takes all possible configurations. The 
bonds contributing most to ~ are marked by lines in Fig. 4. The surface tensions are 
the same for the flat and curved surfaces if (1) the density (denoted by b) of the 
cross-surface bonds per unit curved surface is the same as that for a flat surface, 
and (2) the number of molecules sitting within the distance a from the surface is the 
same for the two cases. 

0 O 0  0 0 . . 0  0 
o o ~ o Y o ~ ~ o 

o_~ o~ 
o' 9 ~  a 2 "xi~ o 

o - . - :  : .50Oo ~ 
o - ~ 

o o o 

oo~ oo~ 
Fig. 4. An imbedded cluster and bonds across its boundary. Lines mark bonds which contribute 
most to the surface free energy. The bonds connect molecules on S+ (black circles) and those on 
S_ (white circles). 

822/zi2-9 
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There is a thermodynamic theory IG) which says the surface tension decreases 
with the radius. We believe this effect is of  a different nature from the factor qb we 
are concerned with, and we decide to neglect it in order not to confuse the issue, 
although it may be necessary to take this effect into account when our theory is to be 
compared with experiments. 

In Fig. 4, we can distinguish the outside surface S+ of the inside cluster and the 
inside surface S_ of the "outside." By examining the curvature of  the surfaces in 
Fig. 4, we can see that the density b_ of  cross-surface bonds measured at S_ is smaller 
than b 0 for the flat surface (in the same bulk phase), and that b+ measured at S+ is 
larger than b0 �9 Therefore, there is a surface So around midway between S+ and S_ 
at which the density of  the cross-surface bonds is equal to the flat-surface value b0 �9 
This means that when we choose the surface area of  S b as A~, the condition 1 is 
satisfied. Halfway between S+ and S_ is exactly the place where the boundary surface 
for the inside cluster lies, as indicated by a broken curve in Fig. 4; the special case A~ ~ 
for the sphere is given in Eq. (25b). 

The volume between the spheres of  radii r ~ a and r - -  a is 

(47rt3)[(r + a) 3 - -  (r - -  a) 31 = (47rr2)(2a)[1 + (a213r2)] (38) 

Each molecule within the distance about I/2 from the boundary surface represents 
three degrees of  freedom at an end of a cross-surface bond, which contributes to the 
p.fn. counted in the surface free energy. For a = l/2 and r = 31 (corresponding 
to n ~ 100), we see a2/3r 2 ~ 1, and Eq. (38) is equal to the surface area times the 
thickness; this means condition 2 is satisfied. Thus, we conclude that the surface 
tensions for the flat surface and the curved surface are equal. 

I t  may still be argued that the relative translational and roational oscillations 
of  the "outside" with respect to the inside cluster gives rise to p.fn.'s of  the form 
of kT/hco and that these p.fn.'s induce in ~U3 a term of the form of k T l n ( k T / h w )  
which is not proportional to the surface area. This argument is answered heuristically 
as follows. 

When the intermolecular potential q~(r) is as shown in Fig. 5, we can approximate 
it near its minimum as 

~(r) = e + [K(r - -  ro)2/21 (39) 

where • is the spring constant near the bottom. The average around r = r 0 leads 
to the p.fn. of 

~'1 e - ~  dr = e-~'kT/ho) (40a) 

where 

and 

'Yz --~ (2~mkT)l/Z/h (40b) 

~> _~  (,<lm),/~ (4Oc) 
is the frequency of oscillation. I f  we could treat each bond as independent, then 

exp(Oi./3) = [e-~'(kT/hco)/vlll** (boA,) (41) 
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rO 

\ i S  
Fig. 5. Intermolecular potential el(r). The mhaimum value e ( < 13) is at r = r0. 

where boAs is the total number of cross-surface bonds. The denominator 7,1l is 
introduced in order to show that exp(Oi/3) is a ratio of two p.fn.'s and that it is 
independent of 7'1 ; the value of the length I is unimportant for the present discussion. 
Equation (41) shows that ~/3 is proportional to the surface area. 

In Eq. (41), we interpret each bond as a simple harmonic oscillator oscillating 
around its minimum point (although this kinetic description is somewhat misleading, 
because the momentum p.fn., ~1, cancels after all). There is another and equally 
valid description of these oscillators using collective modes. Due to the latter, Eq. (41) 
may be written as 

exp(6"ifl) = exp(-- E~boAn ) J I-[ kT/h~ (42) 
j ~'1l 

where j goes up to the total number of bonds boA~. The multiplication factor J 
results from the Jacobian between the original and the transformed coordinates. 
It is to be emphasized that although the proportionality of 0~fl to the surface area 
is not obvious in Eq. (42), it is clearly demonstrated in Eq. (41). The analysis done up 
to this point is good for a closed, finite surface like Fig. 4, as well as for a flat, infinite 
surface. 

There are special kinds of collective oscillations we are concerned with. For  a 
flat surface, we denote by Te~a~ the relative oscillation of the two sides of the surface 
en masse perpendicular to the flat surface. For  a dosed surface, we denote by Tezosea 
the relative oscillation of  the inside and outside along a certain fixed direction; 
and Relosea denotes the relative rotational oscillation of the inside and outside. 
The key question we ask is if Telosea and Relosea lead to factors which make 0i/3 not 
proportional to the area. 

Figure 6 shows schematically that these three collective modes can be defined 
both for the flat and the closed surfaces. For the flat surface, we know that coj corre- 
sponding to those in Fig. 6 appear among the factors for calculating O~fl in the form 
of Eq. (42) and then, in turn, in the form of Eq. (41), which shows ~ is proportional 
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t ! TFLAT 
\,, / 

]-CLOSED 

--4_1--t---_4_-It-_ Sc,osE0 @ 
Fig. 6. Four modes of oscillation schematically shown for a flat surface and a closed surface. 
In order to exaggerate the effect, the inside and the outside for rotation mode R are drawn non- 
concentric. 

to A,~. In analogy, we reason that for the closed surface also, the three collective 
modes of Fig. 6 and those not shown here lead to the corresponding ~oj in Eq. (42), 
which, in turn, can be rewritten in the form of Eq. (41), and hence we conclude that 
6 ~  is proportional to the surface area. In other words, it is not justified to single 
out (kT/h~o)'s corresponding to Tciosea and Rezosea and say that 0~/3 is not proportional 
to As o 

7. D ISCUSSION 

1. It is significant to note that the theory presented in Sections 4 and 5 becomes 
almost identical with Lothe and Pound's (LP) when the identification of  the surface 
free energy is changed. They reason m that ~i/3 in Eq. (20) is not proportional to the 
surface area and that Eq. (22) is to be replaced by 

exp(0d3 ) = [exp(~A~/3)] Ftr]'rot (43) 

where the two /~ factors are contributions from Tclosed and Rcaosea in Fig. 6. In 
estimating the surface free energy, we may keep the "outside" fixed and move the 
inside instead of the reversed operations in Fig. 6. Corresponding to Tezosea, Lothe 
and Pound write 

l"tr = (k  T/hoJ~r)3/(7,v~) (44a) 
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where 6Otr is the frequency of translational oscillation of the imbedded cluster when 
the outside is fixed. The second factor/ 'rot is written as 

/"rot = (AO/2~r) a (44b) 

where AO is the angular amplitude of rotational oscillation of the inside cluster 
when the outside is fixed. If  Eq. (43) is used instead of Eq. (22), the factor ~ in 
Eq. (29) is replaced by 

q5 = [~,vo/(k r/hmtr)3][2rr/AO] 3 (45) 

which is the Lothe-Pound factor, 1027. 
Since we proved in Section 6 that Eq. (43) is not the case, Lothe and Pound's 

claim, Eq. (45), is denied. However, it seems worthwhile to present arguments which 
reiterate our stand. 

a. We can argue that as far as the calculation of the surface free energy goes, 
other modes like Tn~t and Selosed in Fig. 6 are of the similar nature as Tclosed and 
Rclosea, so that i f / ' t r  and/ 'rot  are to be factored out as in Eq. (43), there is no reason 
why, for example, /'shear [which is of the same qualitative form as / ' t r  in Eq. (44a)] 
for the Selosea mode is not factored out in Eq. (43) also. 

b. Another difficulty in the interpretation of Eq. (43) lies in the nonspherical 
clusters. For such a cluster, the orientation degeneracy factor O is to be multiplied 
as in Eq. (26). If  we follow Eq. (43) and replace vg/v~ in Eq. (26) by Eq. (45), the 
resulting r has two factors, 1//'rot and O, of similar nature. 

The original proposal of Lothe and Pound (1~ was that the rotational degrees of 
freedom which are frozen in the bulk liquid are liberated in the vapor phase. Our O 
represents exactly this effect, although the estimated value of O in Eq. (27) is much 
smaller than 109 which they proposed, a-31 Either one of the factors O or 1//'rot is 
extra and has no place in their original concept. 

c. In order to further elucidate our argument, we examine the one-dimensional 
model treated in Appendix B. The surface free energy is identified in (B.2) as 

exp(2c~zfi) = e-~(kT/hc~)/(TJ) (46) 

The (kT/tieo) factor originates in the mutual oscillation of the inside and outside, 
l is the length per molecule, and e is the minimum of the potential energy as defined 
in Fig. 5 and Eq. (39). Abraham and Canosa Is) identify only --e as the surface free 
energy 251 , and include the rest of the right-hand side of Eq. (46) in the "replacement" 
term. The following qualitative reasoning justifies Eq. (46) against their stand: 
The product e-B~(kT/hoJ) results from one integral shown in Eq. (40a) and should be 
treated as a unit, since kT /hw  contains the potential energy contribution no less 
than e -~ does. 

This example of one dimension clearly shows that in the three-dimensional 
expression (43) it is also not justified to separate/ '% to be included in the ~ as in 
Eq. (45), since the/1  factors are simply a part of one integral of the qualitative form 
of Eq. (40a) which leads to the coordinate p.fn. In other words, if the / '% in Eq. (44) 
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are ever to be included in the q) factor as in Eq. (45), a part of the potential energy 
contribution of the form of  e - ~  should also be in q~. 

d. We can also comment that the surface free energy should not depend on the 
moment of inertia /c luster  which depends on the mass distribution deep inside the 
cluster. Nevertheless, the published replacement factor of Lothe and Pound (1-3) 
explicitly depends o n  Ieluster �9 This shows that either their replacement factor is not 
of the nature of the surface free energy, o r / c l u s t e r  cancels after all. The expression (44b) 
is based on the latter interpretation. (7) 

2. There is a second, and probably the original, interpretation of the LP theory. 
In this interpretation, the proportionality of the surface free energy to the surface 
area, Eq, (22), is assumed accepted. For this case, we argue against the LP theory (1-3) 
as follows. 

When we compare the p.fn.'s in Eqs. (11) and (23), a particular emphasis is to be 
placed on the rotation of the cluster. Suppose the shape of the cluster is spherical. 
Since the two sums over the relative configurations in these expressions are identical, 
there is no difference between the two as far as the rotational degrees of freedom are 
concerned, and thus there is no room for the rotation to influence the factor 4 .  
This reasoning and conclusion agree with that of  Reiss et aL ~.5~ 

It may still be argued that the rotation in the isolated droplet is free, while the 
rotation of the n-cluster in the condensed phase, if it is pictured as a rigid rotating top, 
is an oscillation of only a small amplitude. This argument, however, does not invalidate 
the above conclusion, because the rotated state of the cluster can be reached by a 
succession of small displacements of many molecules in the imbedded cluster, and 
what counts in the partition function is the accessibili ty (9) and not how the state is 
reached. The last statement is a result of the situation that the momentum p.fn. is 
taken care of separately by the factor ~, and therefore we are concerned with the 
configurational p.fn. only. 

For a nonspherical shape of the cluster, we do take into account the contribution 
from the "rotat ion" in the form of  the degeneracy factor O as in Eq. (26). This factor O 
is sometimes called the weight factor and is a familiar concept in statistical mechanics 
of cooperative phenomena (Kikuchi and Brush; (z~ also see Guggenheimm)). We 
regard this 6) as closest to LP's original concept of liberation of the ratotional degrees 
of freedom, as we commented in l(b). It gives rise to the summation over shapes 
in Eq. (26). However, when this term is small, as is the case for water at 300 ~ K, 
O, and hence the "rotation," do not appear in the final expression for (b at all. 

If  our arguments on the rotation are agreed upon, LP's theory (2,a) is interpreted 
as replacing the vz in Eq. (29) by the free volume vf in which the center of mass of 
an n-cluster (regarded as a rigid body) can move inside a cage formed by the outside 
molecules. This free volume is of the order of n -~ of the free volume of a single molecule 
in the liquid phase and is several orders of magnitude smaller than our v~ in Eq. (28). 
From the point of view of  the molecular volume theorem, we interpret that the 
"cage" itself is formed by summing Boltzmann factors for the outside molecules 
as shown in Eq. (20). As the imbedded cluster (regarded as the rigid body) moves, 
the configurations (of the outside molecules) which contribute most to the surface 



The Translation-Rotation Paradox in the Nucleation Theory 369 

free energy 5i move accordingly. In other words, we say that the cage itself shifts 
as the cluster shifts. However, if the cage and the cluster move too far a distance, 
the configurations formed at the new location are no more distinguishably different 
from those counted in the old location. The molecular volume theorem says that the 
limit of the range in which the cage and the cluster can move and still form meaning- 
fully new configurations is the molecular volume v~. 

It is true that the center of mass of a rigid n-cluster oscillates only within the 
volume vf if it is seen in a short time scale. However, we make recourse to the same 
argument as was used concerning the rotational degrees of freedom and say that the 
larger shift of the imbedded cluster is realized by a succession of small drifts and what 
counts in the p.fn. is the accessibility. 

3. The RKC numerical estimate of ~ covers a range in which Eq. (30) lies, 
although the reasoning is somewhat different. The work of Reiss et al. ~4,5~ and the 
present paper both examine an imbedded cluster and try to find a volume in which 
the center of mass (or the "fixed" point) in the cluster can move while the cluster is 
confined in a prescribed boundary and after the fixed-point p.fn. has been constructed. 
We arrive at v~ in Eq. (29) by asking the question: What is the volume in which the 
"fixed point" can move to produce a distinguishably different configuration (to be 
summed in the p.fn.)? The RKC procedure and model for arriving at the 
corresponding volume Vtr are different from ours; it can be shown, however, that the 
two volumes are of the same physical meaning, as follows. 

RKC define their Vtr as 

v~r ----- f~ Z(R) dR/z (R  = 0) (47) 

where v is the volume of the n-cluster and z(R) is defined as 

: n ~ ~ ... f exp[--fiE(rl', .... r~_0] dr1' "'" dr;_~ (48) z(R) 
d ~(R) d 

Here, R is the center of mass and r / i s  the center-of-mass coordinate as in Eq. (12). 
The integral is done in such a way that all molecules lie within the boundary of the 
cluster; therefore, the limits of the integral depend on R as signified by the symbol v(R). 
The Vtr in Eq. (47) is interpreted as the sum of the volume elements d(volume) with 
the weight z(R)/z(O). We can reason qualitatively that zCR) is nearly equal to z(0) 
when R is within the molecular polygon (defined in Section 3) around the origin, 
and that z(R) decreases sharply as R goes further away from the origin. When this 
qualitative picture holds, RKC's Vtr is close to the volume of the molecular polygon vz. 
This is the reason for the close similarity between the two numerical estimates of the 
volume. 

8. S U M M A R Y  

The controversial factor 1017 first proposed by Lothe and Pound a-8) has been 
studied by carefully examining partition functions of an n-molecular cluster in the 
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isolated state and imbedded in the liquid phase. Different from previous treatments, 
the present paper is based on the principle that each distinguishably different state 
is counted exactly once in forming the partition function. Also, it is emphasized that 
the partition function is to be written for the equilibrium state using accessible 
configurations and should not be distorted by a kinetic picture, although we may 
use kinetic language in describing states to be summed in the partition function. 
A "molecular volume" theorem has been proved which says, "When a relative parti- 
tion function of a homogeneous system is formulated keeping one of the molecules 
fixed at the origin, the complete partition function is the product of  the relative one 
and the molecular volume." An implication of this theorem is that the replacement 
term of Lothe and Pound should be for a linear translation within a molecular 
volume v~. This is to be compared with the molecular volume vg in the gas phase 
in which the isolated n-mer can linearly translate. As a consequence, the form of the 
controversial factor has been shown to be q) = vo/v~. It  was proved that the surface 
free energy of a cluster is written as a product of the surface area and the surface 
tension (defined for a flat surface); because of this proof, the rotational degrees of  
freedom do not contribute to ~. For water at 300 ~ K, the value of q~ is about 10 ~. 

A P P E N D I X  A. T H E  MASS A S S O C I A T E D  W I T H  T H E  CENTER 
OF HASS 

In this appendix, we answer the question raised at the end of Section 2 concerning 
the mass to be associated with the motion of the center of  mass of  a cluster. For this 
purpose, we examine a simple example: three particles of  equal mass in a linear space. 
The coordinates and momenta  of  the three particles are written as xi and Pi 
(i = 1, 2, and 3). We introduce a transformation: 

Xo : (x1 -~- x2 ~- x3)/3, X1 : (x1 - -  x 8 ) / 3 ,  X2 = (Xl -- 2X~ 4- Xs)/3 (A.1) 

where X 0 is the center of  mass. Using the Lagrangian function, the momenta conjugate 
to Xi are derived as 

Po = 3m)~o = Pl -k p~ -k P8 

P1 = ~rn)(1 = 3(pl - -  p3)/2 (A.2) 

P2 = ~m)(2 = (Pa --  2p~ --k p3)/2. 

The transformation (A.1) was so chosen that cross terms PiPj do not appear in the 
transformed expression of the kinetic energy: 

l ~ 1  1 92 2 32 p2~} K----- (p2+  p2_k p8 2)= (]Po 2+ Pz -k (A.3) 

We are interested in the following expression, which appears in the partition 
function, 

i = h -8 @1 @2 dp~ e -KB dxz dx2 dxs (A.4) 
--co --oo --oo 
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After the integrations over the P i ,  this becomes 

I = 713 dxl dx2 dx3 ; 7'1 -~ (2~rmkT)l/2/h 

On the other hand, if we use the transformed coordinates, I is evaluated as 

(A.5) 

= h -3 ~ J~ dPo r j~  dP1 ~ j ~  dP2 e -K~ dXo dX1 dX2 I 
- o o  - c o  - o ~  

(A.6) 
= a(71x0 d(elxl a6,1x  V3 ) 

where the result of the integral h -1 .f dP1 is written next to X~. This expression shows 
that the coordinates )Co, X1, and X2 are associated with the masses 3m, 9m/2, 
and 3m/2, in agreement with (A.2). However, this association is not binding, because 
(A.6) is equivalent to 

I = 9~13 dXo dX1 dXe (A.7) 

in which the correspondence between Xi and its mass is lost. We can arrive at (A.7) 
directly from (A.5) by using the Jacobian for (A. 1): 

! 6q(Xo, X l ,  X2) = 2 (A.8)  
i, a(xl ; x3) 

It is also instructive to see a case when the mass corresponding to a transformed 
coordinate cannot be defined. Let us examine the transformation 

Xo, = (x I Af_ x2 ~_ x3)/3, XI,  ___ (2x1 _ x2 _ x3)/3, X2' = ( - -x l  + 2x2 -- x~)/3 

(A.9) 

The conjugate momenta are 

P0' = 3m)~0' = Pz -]- Pz + Pa 

PI' = rn(2fi21' + • ' )  = Pl -- Pa 

P2' = D/(-J~I' Z~_ 2 ~ ' )  = P2 --P3 

which brings the kinetic energy K of  (A.3) into 

1 [2Po 2 + ( p (  + p2,)e + 3(Pz" --  p()2] K = 1 ~ -  m 

(A.IO) 

(A.11) 

Since this expression contains a cross term PI'P2', we cannot uniquely define the 
corresponding mass from the integrations over PI' or P(.  Therefore, it is not possible 
to write I in the form corresponding to (A.6) multiplying X /w i th  the factor containing 
its corresponding mass, whereas it is always possible to write I in the form (A.7) 
as a product of  dJ( /wi th  the appropriate Jacobian factor. 

Another example is shown when the three particles are bound by the potential 
of Fig. 5 and move in a linear space L. When the particles oscillate near the potential 
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minimum, the displacements f rom the state o f  minimum potential are written as 
xa,  x2, and x3. The equations o f  mot ion are 

m d2xl/dt 2 = K(x2 - -  x0  

m d2xJdt  2 = K(xz - -  x2) + ~:(x~ - -  x2) (A.12) 

m d2x3/dt 2 : K(X2 - -  X3) 

where • is the spring constant  written in Eq. (39). When  the X's  in (A.1) are used, 
the equations (A.12) are brought  to a normalized form, and the characteristic 
frequencies corresponding to X~ (i = 0, 1, and 2) are 

co 0 = 0, co 1 = co, and co 2 = co ~/3 (AiI3) 

where co is the frequency defined in Eq. (40c). 
The potential energy is 

W : 1 K [ ( x  I - -  X2) 2 @- (X 2 - -  X3) 2] -@ 2 e  (A.14) 

Using (A.5), the partit ion function is written as 

L oc oc 

0 --oc --~ 

When xx, x2 --  x l ,  and x~ --  x.~ are used as the new set o f  variables, the Jacobian 
is unity and Q is integrated as 

Q : v1L(e-~*kT/t~o)2 (A.16) 

where we used 

y1(2~r/fiK)l/2 = k T / h w  (A.17) 

It  is to be remembered that  kT/hoo is the classical partit ion function of  a simple 
harmonic  oscillator of  frequency co. On the other hand, when we t ransform the 
potential energy W in (A. 14) using the X ' s  in (A. 1), we can write Q in (A. 15) as 

,, .| .o ~ 9 2 Q = )o ~/,dXoj_y.i~dX~ f.oW~dX, exp[_fi~s~(X ' 9- X.')- 2Eft] (A.18) 

where we used (A.6). The result o f  this integration can be written as 

k T  k T  
Q = (y~ ~/3)  Le  -2~  (A.19) 

hCO 1 hO9 2 

where ~oz and ~% are defined in (A.13). The last two factors are for  the two normal  
modes. The expression (A.19) is identical to (A.16), since (A.13) gives 

o~zc% = 0) 3 V/3 (A.20) 
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and the factor v/3 cancels the same in the center-of-mass motion 71 ~/3. It is easy 
to generalize the argument and write for a chain of n molecules, 

09 n-1 V ~  = I-I ('05 (A.21)  

This relation was derived by Abraham and Canosa (8) and by Lothe and Pound. (.2~ 
It should be noted the the factor "~/n originates in the coordinate transformation 
to the collective modes and expresses the fact that the mass associated with the center 
of mass in nm. However, it should also be noted that in (A.16) the mass associated 
with the mass motion of the cluster (linear translation of the cluster as a rigid body) 
is not nm but m, as shown by the factor yzL. 

We conclude from these examples that it is not justified to automatically write nm 
in the normalizing factor for the center-of-mass coordinate. The correct procedure 
is to start from the expression (A.5) in terms of the rectangular coordinates of 
individual particles, transform it using the Jacobian (A.8), and arrive at the 
expression (A.7). 

This conclusion is equivalent to saying that the relative p.fn., i.e., the fixed-point 
p.fn., is meaningless unless it is specified what kind of mass is used in the center- 
of-mass p.fn. 

A P P E N D I X  B. SURFACE FREE ENERGY OF A L I N E A R  C H A I N  

The surface free energy of a linear chain discussed in Appendix A is treated here. 
Consider a system of n molecules in a linear space. Each molecule is connected by 
springs to its two neighbors, except the two end ones, which are connected only on one 
side. The length of the system is nl, where l is not far from the stable spring distance r0 
in Eq. (39). The partition function of this system is, from (A.16), 

Q(n) = yj(e-Br T/hco) "-1 (B.1) 

The second factor is the fixed-point p.fn., and l is the molecular "volume;" thus, 
Eq. (B. 1) is an example of  the molecular volume theorem. 

We start with a system of nl § n~ molecules and divide it into two parts, one 
with nl molecules and the other with n~, and place them separately in linear spaces 
of lengths n j  and n j ,  respectively. Now, the separated system has two more surfaces 
than the original ones, and hence the surface free energy per surface 61 is derived 
from the ratio 

exp(2~zfl) = Q(nl -1- n2)/Q(nz) Q(n2) = e-~(kT/h~o)/yl l  (B.2) 

This derivation of exp(2Od3) is due to Cohen and Katz, (~3~ except for the interpretation 
of L 

An alternative derivation of (B.2) is from (B.1). The p.fn., Q(n), can be written 
as a product of the bulk part (e-B'kT/h~o) '~ and the two surfaces exp(--2O~/3): 

Q(n) = (e-B'k T/ho)) '~ exp(--ZOzfi) (B.3) 

The comparison of (B.3) and (B.1) leads to (B.2). 
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As the third derivation of (B.2), we show that the definition in Eq. (20) leads 
to (B.2). We consider the molecule 0 in the inside and the molecules 1, 2, 3 ..... N on 
the outside. The cross-surface potential corresponding to E/,z in Eq. (20) is 

e0,1 = e + �89 --  xz) 2 (B.4) 

The numerator of  Eq. (20) corresponds to 

Qnum : yl exp(-/3e0, 0 dx~(e-~kT/h~o) N-~ (B.5) 

The second factor is the result of  integrations over molecules 2, 3,..., N. The 
denominator of Eq. (20) corresponds to 

Qaen ~- [Q(N) exp(2~l~)] exp(-51f l  ) (B.6) 

This needs some explanation. The two factors in the brackets correspond to e -NIB, 
since the difference between the latter and Q(N)  is the two surfaces, as shown in (B.3). 
The last factor corresponds to the effect of  the external surface exp(--~A,+N/3) 
in Eq. (20). Substituting these relations together with (B.1) for Q(N)  in the modified 
form of Eq. (20), 

exp(2(~1fl) = [exp(51/3)] Onum/Qden (B.7) 

we arrive at (B.2). The gist of  this procedure is the breaking of the 0-1 bond: 

l 
e o  

exp(2,~x/3) = ),~ exp(--fieoa) dx~/(~fl) 
- - o o  

(B.8) 

which leads to (B.2). The l in the denominator originates in the molecular volume 
theory, and it can be interpreted that dxa/l is the average density of  the molecule 1 
in dxl . 
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Necessity of  comments on the surface free energy (Section 6) was realized as a 
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